# Sporidesmins. Part 17. ${ }^{1}$ Isolation of Sporidesmin H and Sporidesmin J 

By R. Rahman, S. Safe, and A. Taylor,* National Research Council of Canada, Atlantic Regional Laboratory, Halifax, Nova Scotia, Canada


#### Abstract

Two new sporidesmins have been isolated from the polar constituents of culture extracts of Pithomyces chartarum. One of these, named sporidesmin H , is possibly a 3 -cholorindoline ( 1 ) and the other, sporidesmin J , is shown to be de- $N^{6}$-methylsporidesmin (2).


During fractionation of extracts of cultures of $P$. chartarum described in earlier reports in this series of papers ${ }^{2-4}$ it was noticed that polar fractions were biologically active, ${ }^{5}$ and catalysed the conversion of azide to nitrogen by iodine. ${ }^{6}$ The preparation of a quantity of sporidesmin for use as a relay in the synthetic studies of Kishi et al. ${ }^{7}$ gave an opportunity to examine these polar fractions in greater detail. When crude extracts ${ }^{2}$ were eluted from silica gel with a gradient of ethyl acetate in benzene, fractions were obtained, in increasing polarity, containing: sporidesmin $\mathrm{B},{ }^{2}$ sporidesmin, ${ }^{2}$ sporidesmins $\mathrm{E}^{3}$ and $\mathrm{G}^{4}{ }^{4}$ sporidesmin $\mathrm{D},{ }^{8}$ and finally mixtures of depsipeptides. These peptides were largely insoluble in ether, and the ether-soluble, biologically active ${ }^{5}$ materials were shown to contain at least two new epipolythiodioxopiperazines ${ }^{9}$ by preparative layer chromatography (p.l.c.). The most polar
${ }^{1}$ Part 16, D. Brewer, A. G. McInnes, D. G. Smith, A. Taylor, and J. A. Walter, J.C.S. Perkin I, 1978, 1248.
${ }_{2}$ J. W. Ronaldson, A. Taylor, E. P. White, and R. J. Abraham, J. Chem. Soc., 1963, 3172.
${ }^{3}$ R. Rahman, S. Safe, and A. Taylor, J. Chem. Soc. (C), 1969, 1665.
${ }^{4}$ E. Francis, R. Rahman, S. Safe, and A. Taylor, J.C.S. Perkin I, 1972, 470.
${ }^{5}$ J. Done, P. H. Mortimer, A. Taylor, and D. W. Russell, J. Gen. Microbiol., 1961, 26, 207.
of these, named sporidesmin J , was produced by the fungus in $c a .1 \%$ of the quantity of spirodesmin. ${ }^{5}$ It was crystalline and its elemental analysis and mass spectrum indicated a molecular formula $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}$. It was, therefore, a demethylsporidesmin. The mass spectrum of sporidesmin J had an abundant ion $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}_{3}{ }^{+}$, but the ion $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3}{ }^{+}$present in all other sporidesmin mass spectra ${ }^{10}$ was absent. Hence the absent methyl group was one normally located in the indoline moiety. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed that the $\mathrm{N}-\mathrm{CH}_{3}$ signal at $\delta_{\mathrm{H}} \simeq 3.0$, assigned to the indoline nitrogen methyl ${ }^{11}$ in the spectrum of sporidesmin, was absent and a new exchangeable proton ( $\delta_{\mathrm{H}} 5.15$ ) coupled to the bridgehead proton ( $\delta_{\mathrm{H}} 5.67$ ) was present. Thus sporidesmin J is de- $N^{6}$-methylsporidesmin, a conclusion confirmed by its conversion into diacetylsporidesmin ${ }^{2}$ upon acetylation and methylation.

[^0]A second component from the p.l.c. separation was not obtained pure. The best samples of this material, named sporidesmin H , inhibited the growth of He La cells ${ }^{5}$ at $3 \times 10^{-9} \mathrm{~g} / \mathrm{ml}$. Elemental analysis of the amorphous solid gave sulphur : chlorine ratios of $2: 1$, but did not correspond to a theoretical empirical formula, possibly because of the instability of the metabolite. In the mass spectrum of sporidesmin H , ions at $m / e 443$ and 441 were observed. These ions were of low abundance but their relative abundances were those calculated for ions of the elemental compositions: $\mathrm{C}_{18} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ and $\mathrm{C}_{18} \mathrm{H}_{20}{ }^{37} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$. An abundant ion $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}$ was observed in this spectrum. The formation of such an ion from $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires the loss of the elements $\mathrm{H}_{3} \mathrm{ClS}_{2}$. The loss of the elements $\mathrm{H}_{2} \mathrm{~S}_{2}$ from the molecular ions of epidithiodioxopiperazines is well documented ${ }^{10}$ but the loss of HCl has not been recorded in the sporidesmin series. As in the mass spectra of all epidithiodioxopiperazines, that of sporidesmin H contained abundant ions corresponding to $\mathrm{S}_{8}{ }^{+}, \mathrm{S}_{7}{ }^{+}$, and $\mathrm{S}_{6}{ }^{+}$, etc. No absorption bands were found in the $\mathbf{3} 600-$ $3200 \mathrm{~cm}^{-1}$ region of the i.r. spectrum of sporidesmin H and no exchangeable protons (with $\mathrm{D}_{2} \mathrm{O}$ ) were observed in its ${ }^{1} \mathrm{H}$ n.m.r. spectrum. In the latter spectrum signals assigned to a C-Me group, 2 NMe groups, 2 OMe groups, a bridgehead proton, and a methylene group similar to that found in sporidesmin $\mathrm{B}^{2}$ were seen. The remaining two protons were unique in the sporidesmin series. Their chemical shifts ( $\delta_{\mathrm{H}} 6.98$ and 6.43 ) and coupling constant ( $J=8.5 \mathrm{~Hz}$ ) showed them to be ortho hydrogens on the aromatic ring. There are, therefore, three possibilities for the orientation of these protons in sporidesmin H . We were unable to degrade the metabolite to the corresponding isatin, and thus establish this orientation. However, 6,7-dimethoxy- and 4,7-dimethoxy-3-methylthio- $1 H$-indol-2-ones were synthesised in ca. $50 \%$ yield by Gassman's ${ }^{12}$ method. In addition cyclisation of 4 -aminoveratrole gave not only 5,6-dimethoxy-3-methylthio-1 $H$-indol-2-one ( $50 \%$ ) but

also the product from the alternative mode of rearrangement of the intermediate (3), i.e. 4,5-dimethoxy-3-methylthio- 1 H -indol-2-one ( $<\mathbf{1} \%$ ). Thus compounds having the three possible orientations of methoxy-groups
in sporidesmin H were available. The n.m.r. spectra of these compounds permitted assignment of the signals of their aromatic protons (see Table), and especially that

Chemical shifts of aromatic protons in ${ }^{1} \mathrm{H}$ n.m.r. spectra of dimethoxy-3-methylthio-1H-indol-2-ones and in sporidesmin H

| Methoxy-substituents | $\delta_{\mathbf{H}_{4}}$ | $\delta_{\mathrm{H}_{3}}$ | $\delta_{\mathrm{H}_{\mathbf{s}}}$ | $\delta_{\mathrm{HI}_{7}}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\quad 4,5$ |  |  | 6.82 | 6.58 |
| $\quad 5,6$ | 6.98 |  |  | 6.62 |
| 4,7 |  | 6.32 | 6.80 |  |
| $\quad 6,7$ | 7.05 | 6.60 |  |  |
| Sporidesmin H | 6.98 | 6.43 |  |  |
| Sporidesmin J | 7.14 |  |  |  |

of the proton at position 4 which was 0.2 p.p.m. downfield of the others. It follows that sporidesmin H also has a proton at position 4 (10) and that the orientation of the methoxy-groups is probably the same as in all other sporidesmins. 6,7-Dimethoxy-3-methylthio1 H -indol-2-one differed from the other 1 H -indol-2-ones because it did not have an absorption band at $310 \mathrm{~nm}-\mathrm{a}$ characteristic shared by sporidesmin H . All these data and biogenetic considerations ${ }^{1,13}$ are consistent with structure (1) for sporidesmin H .

## EXPERIMENTAL

U.v. spectra were recorded on a Cary 14 instrument, and i.r. spectra on a Perkin-Elmer 237 spectrometer. Mass spectra were obtained by direct introduction of the sample into the source of a Dupont 21-110B mass spectrometer. Precise mass measurements were obtained by the peak matching method by comparison to an ion in the spectrum of perfluorokerosene. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded using $\mathrm{C}^{2} \mathrm{HCl}_{3}$ as a solvent, on Varian A-60-A and HA-100 instruments. All chemical shifts are reported in p.p.m. downfield from the signal of tetramethylsilane; the letter $e$ in the n.m.r. data indicates that the proton was exchangeable. Silica gel (Merck), layers $1-\mathrm{mm}$ thick supported by glass plates $1 \mathrm{~m} \times 20 \mathrm{~cm}$, was used for p.l.c.

Isolation of Sporidesmin $H$ and Sporidesmin J.-The lipid-free methanol extract ${ }^{2}(18 \mathrm{~g}, c a .6 \mathrm{~g}$ mixed sporidesmins) was dissolved in benzene ( 200 ml ) and applied to a silica gel ( 2 kg ) column ( 100 mesh, diam. 7 cm ). The column was developed with benzene-ethyl acetate (4:1), the ethyl acetate concentration being increased by $1 \%$ as each 21 of eluant ran through the column. The first 37.61 passed through the column contained no sporidesmins, the next 2.51 contained mostly sporidesmin $B$ contaminated with sporidesmin, and the following 1.61 gave sporidesmin ( 4 g ). Further elution with 2.41 of the solvent gave a mixture of sporidesmin and sporidesmin $E$. The next 5.6 l contained traces of a sporidesmin $G$ and sporidesmin D . The following 3 l , on evaporation, gave a gum ( 2.5 g ) which was triturated with ether ( $5 \times 20 \mathrm{ml}$ ) and the ethereal solutions combined, concentrated, and applied to a preparative layer plate, which was developed with chloroform-acetic acid (49:1). The band of lowest $R_{\mathrm{F}}$

[^1](detected by u.v. absorption and aqueous $\mathrm{AgNO}_{3}{ }^{9}$ ) was eluted from the silica gel ( EtOAc ), the eluate evaporated, and the residue, recrystallised from ether gave sporidesmin $J(2)\left(21 \mathrm{mg}\right.$ ), m.p. $168-169{ }^{\circ} \mathrm{C}$ (Found: C, $44.6 ; \mathrm{H}, 4.2$; $\mathrm{Cl}, 7.8 ; \mathrm{N}, 8.7 ; \mathrm{S}, 13.3 . \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $\mathrm{C}, 44.4$; $\mathrm{H}, 3.95 ; \mathrm{Cl}, 7.7 ; \mathrm{N}, 9.1 ; \mathrm{S}, 13.9 \%),[\alpha]_{\mathrm{D}}{ }^{18}+43^{\circ}(c, 0.25$, $\left.\mathrm{CHCl}_{3}\right), m / e 459.0325\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}\right.$ requires 459.0326$)$, 397, 395, 256, 229, $227.0345 \quad\left(\mathrm{C}_{10} \mathrm{H}_{10}{ }^{35} \mathrm{ClNO}_{3}\right.$ requires $227.0349), \delta 7.14(\mathrm{H}), 5.67(\mathrm{H}, J=4 \mathrm{~Hz}), 5.17(\mathrm{H}, \mathrm{e}, J=$ $1.5 \mathrm{~Hz}), 5.05(\mathrm{H}, \mathrm{e}), 4.74(\mathrm{H}, J=1.5 \mathrm{~Hz}), 3.88(3 \mathrm{H})$, $3.85(3 \mathrm{H}), 3.06(3 \mathrm{H}), 2.03(3 \mathrm{H})$, and $1.74(\mathrm{H}, \mathrm{e})$. The band $\left(\mathrm{AgNO}_{3}{ }^{+}\right)$of greatest $R_{\mathrm{F}}$ was eluted similarly from the silica gel, the ethyl acetate eluate concentrated, and the solution ( 1 ml ) treated with isopropyl ether ( 5 ml ). Sporidesmin $H$ (1) separated from diethyl ether-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ ) as a colourless amorphous solid ( 34 mg ), m.p. $150-152{ }^{\circ} \mathrm{C}$, $m / e 443,441,339.1207\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 339.1219$), 256$, and 176 ; $\lambda_{\text {max. }}(\mathrm{MeOH}) 216,252$, and $290 \mathrm{~nm}(\log \varepsilon 4.37,4.05$, and 3.81$)$; $\nu_{\text {max. }}(\mathrm{KBr}) 1700$ $\mathrm{cm}^{-1}: \delta 6.98(\mathrm{H}, J=8 \mathrm{~Hz}), 6.43(\mathrm{H}, J=8 \mathrm{~Hz}), 5.38(\mathrm{H})$, $3.83(3 \mathrm{H}), 3.75(3 \mathrm{H}), 3.30(3 \mathrm{H}), 3.27(\mathrm{H}, J=16 \mathrm{~Hz}), 3.03$ $(3 \mathrm{H}), 2.70(\mathrm{H}, J=16 \mathrm{~Hz})$, and $2.02(3 \mathrm{H})$.

Sporidesmin Diacetate.-Sporidesmin J ( 7 mg ) in pyridine $(0.1 \mathrm{ml})$ was treated with acetic anhydride $(0.05 \mathrm{ml})$ and the solution kept at $4^{\circ} \mathrm{C}$ for 3 days. The volatile components of the mixture were evaporated at $20^{\circ} \mathrm{C}$ and the residue $\left[\nu_{\text {max. }}(\mathrm{KBr}) 1740 \mathrm{~cm}^{-1} ; m / e 481,479,361,359,228\right]$ treated with dimethyl sulphate ( 0.1 ml ) at $95{ }^{\circ} \mathrm{C}$ for 2 min . The reaction mixture was applied to a p.l.c. plate $(20 \mathrm{~cm} \times 20$ cm ) and sporidesmin diacetate ( 3 mg ), m.p. $185-187^{\circ} \mathrm{C}$, isolated in the usual way.

4,5-Dimethoxy- and 5,6-Dimethoxy-3-methylthio-1H-indol-2-ones.-Chlorine ( 2 ml ) was diluted at $-70{ }^{\circ} \mathrm{C}$ with dichloromethane ( 100 ml ) and the solution treated with a solution ( 20 ml ) of ethyl methylthioacetate ( 5.9 g ) in dichloromethane during a period of 1.5 h . The resulting colourless solution was stirred at $-70{ }^{\circ} \mathrm{C}$ while a solution $(50 \mathrm{ml})$ of 4 -aminoveratrole ( 13.5 g ) in dichloromethane was added during 0.75 h . After a further 2 h at $-70^{\circ} \mathrm{C}$, triethylamine ( 10 ml ) was added and the mixture was stirred for 1 h at $-70^{\circ} \mathrm{C}$ when the reaction mixture was allowed to warm to room temperature. The dichloromethane was evaporated at water pump pressure, ether ( 150 ml ) was added to the residue, and the mixture was treated with dilute hydrochloric acid ( $2 \mathrm{~N} ; 20 \mathrm{ml}$ ) and then stirred overnight at room temperature. The precipitate (A) was washed with water and ether, and the ether phase separated from the aqueous phase which was extracted ( $\times 2$ ) with ether. The combined ethereal extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated. The residue was taken up in hot ethyl acetate ( 10 ml ), kept at $4^{\circ} \mathrm{C}$ for 18 h , and the crystals that separated (B) collected. The mother liquors were evaporated, the residue taken up in toluene ( 10 ml ), and the solution carefully applied to the top of a silica gel column (Merck, silica gel for thin layer chromatography (254); $25 \times 4 \mathrm{~cm}$, packed as a slurry in toluene). The column was developed with toluene ( 50 ml ) and then toluene-ethyl acetate ( $1: 1$ ) until a pale yellow band was eluted ( 8 l ) when fractions ( 11 ml ) were collected. T.1.c. of the fractions showed the presence of 1 H -indol-2ones (by heating the plates in air, or with u.v. radiation) in fractions $15-20$ and $31-37$ (C). Fractions 15-20 were combined, evaporated, and the residue ( 100 mg ) recrystal-

[^2]lised from toluene ( 5 ml ). 4,5-Dimethoxy-3-methylthio-1H-indol-2-one separated from ethanol as colourless needles, m.p. $146-147{ }^{\circ} \mathrm{C}(90 \mathrm{mg} ; 0.8 \%$ ) (Found: C, $54.0 ; \mathrm{H}, 5.7$; S , 13.1. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 5.5$; $\mathrm{S}, 13.1 \%)$, $\lambda_{\text {max. }}(\mathrm{MeOH}) 258$ and $310 \mathrm{~nm}(\log \varepsilon 3.89$ and $3.40), \nu_{\text {max }}(\mathrm{KBr}) 1715,1630,1490,1255,1060$, and 790 $\mathrm{cm}^{-1} ; m / e 239,224,192$ ( $m^{*}$ ca. 155, 239 ${ }^{+} \longrightarrow 192^{+}+47$ ), $177\left(m^{*}\right.$ ca. 163, $\left.192^{+} \longrightarrow 177^{+}+15\right) ; \delta 8.43(\mathrm{H}, \mathrm{e})$, $6.82(\mathrm{H}, J=8 \mathrm{~Hz}), 6.58(\mathrm{H}, J=8 \mathrm{~Hz}), 4.36(\mathrm{H}), 4.00(3 \mathrm{H})$, $3.83(3 \mathrm{H})$, and $2.07(3 \mathrm{H})$. The crystalline precipitates (A), (B), and (C) were combined ( $5.2 \mathrm{~g}, 49 \%$ ) and recrystallised from toluene ( 100 ml ) as needles (m.p. $156{ }^{\circ} \mathrm{C}$ ) and rhombs (m.p. $162^{\circ} \mathrm{C}$ ) having identical i.r. spectra. 5,6-Dimethoxy-3-methylthio- 1 H -indol-2-ones separated from ethanol as colourless dihedral rhombs, m.p. $162{ }^{\circ} \mathrm{C}$ (Found: C, 55.2; $\mathrm{H}, 5.6 ; \mathrm{N}, 5.8 ; \mathrm{O}, 19.9 ; \mathrm{S}, 13.4 . \quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $55.2 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.9 ; \mathrm{O}, 20.1 ; \mathrm{S}, 13.4 \%), \lambda_{\text {max. }}(\mathrm{MeOH})$ 220,270 , and $300 \mathrm{~nm}(\log \varepsilon 4.43,3.83$, and 3.56$)$; $\nu_{\text {max }}$. $(\mathrm{KBr}) 1730,1635,1510,1205,1120$, and $825 \mathrm{~cm}^{-1}$; $m / e 239,192$, and $177 ; \delta 9.30(\mathrm{H}, \mathrm{e}) 6.98(\mathrm{H}), 6.62(\mathrm{H}), 4.27$ $(\mathrm{H}), 3.88(6 \mathrm{H})$, and $1.97(3 \mathrm{H})$.

6,7-Dimethoxy-3-methylthio-1H-indol-2-one.- 2,3-Dimethoxyaniline hydrochloride ${ }^{14}(8.3 \mathrm{~g})$ was suspended in dichloromethane $(100 \mathrm{ml})$ and the stirred suspension treated at $0^{\circ} \mathrm{C}$ with a solution ( 30 ml ) of sodium hydroxide ( 2 g ) in water. The dichloromethane solution was separated, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and added at $-70^{\circ} \mathrm{C}$ to a solution of ethyl methylsulphenylacetate chloride, prepared from chlorine ( 1 ml ) and ethyl methylthioacetate $(2.95 \mathrm{~g})$ as described in the previous paragraph. After 1 h at $-65{ }^{\circ} \mathrm{C}$ triethylamine ( 5 ml ) was added to the mixture which was then stirred for 0.5 h at $-60^{\circ} \mathrm{C}$. It was then allowed to warm to room temperature when the dichloromethane was evaporated off and the residue mixed with ether ( 50 ml ) and dilute hydrochloric acid ( $2 \mathrm{~N} ; 10 \mathrm{ml}$ ). The mixture was stirred for 18 h when the precipitate (A) $(2.5 \mathrm{~g})$ was collected. The ethereal phase was separated from the filtrate and the raffinate extracted with ether. The combined extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue ( 2 g ) was combined with the precipitate ( A ), taken up in hot toluene ( 50 ml ), and the yellow needles $(2.79 \mathrm{~g}, 48 \%)$, m.p. $173-176^{\circ}$, that separated on cooling, were collected. 6,7-Dimethoxy-3-methylthio-1H-indol-2-one separated from ethanol as colourless needles, m.p. $177-178{ }^{\circ} \mathrm{C}$ (Found: C, 55.1; H, $5.7 ; \mathrm{N}, 5.9 ; \mathrm{S}, 13.4 \%), m / e 239,192,177,149$, and $134 ; \lambda_{\max }$. $(\mathrm{MeOH}) 225,256 \mathrm{sh}$, and $310 \mathrm{sh} \mathrm{nm}(\log \varepsilon 4.01,3.38$, and 2.36); $\nu_{\max }(\mathrm{KBr}) 1715,1640,1510,1460,1080$, and 715 $\mathrm{cm}^{-1} ; \delta 8.37(\mathrm{H}, \mathrm{e}), 7.05(\mathrm{H}, J=8 \mathrm{~Hz}), 6.60(\mathrm{H}, J=8$ $\mathrm{Hz}), 4.26(\mathrm{H}), 3.89(6 \mathrm{H})$, and $2.08(3 \mathrm{H})$.

4,7-Dimethoxy-3-methylthio-1H-indol-2-one.-This 1 H -in-dole-2-one was prepared in the same way as the 6,7 -dime-thoxy-isomer starting from chlorine ( 1.65 ml ), ethyl methylthioacetate ( 4.8 g ), 2,5-dimethoxyaniline ( 11 g ), and triethylamine ( 8.2 ml ). After the reaction mixture had warmed to room tempcrature it was washed with water $(2 \times 100 \mathrm{ml})$, evaporated, and the residue treated with ether ( 100 ml ) and dilute hydrochloric acid ( $2 \mathrm{~N} ; 16 \mathrm{ml}$ ). The crude $1 H$-indol-2-one ( $6.1 \mathrm{~g}, 65 \%$, m.p. $168-172^{\circ} \mathrm{C}$ ) recrystallised from toluene as orange prisms and colourless needles both melting at $172-173{ }^{\circ} \mathrm{C}$. The mixed crystals $(0.24 \mathrm{~g})$ were stirred with ethanol ( 30 ml ) and alumina (Woelm, basic, 1 g ) for 30 min , and the mixture heated to boiling and filtered hot. 4,7-Dimethoxy-3-methylthio-1H-indol-2-one separated from the filtrate as colourless needles
( 0.2 g ), m.p. $177-179^{\circ} \mathrm{C}$ (Found: C, $55.1 ; \mathrm{H}, 5.5 ; \mathrm{N}, 5.9 ; 6.80(\mathrm{H}, J=9 \mathrm{~Hz}), 6.32(\mathrm{H}, J=9 \mathrm{~Hz}), 4.32(\mathrm{H}), 3.85$ $\mathrm{O}, 20.2$; $\mathrm{S}, 13.4 \%$ ), $m / e 239,192,177,150,149$, and 134 ; ( 3 H ), $3.82(3 \mathrm{H})$, and $2.11(3 \mathrm{H})$.
$\lambda_{\text {max. }}(\mathrm{MeOH}) 251 \mathrm{sh}$ and $312 \mathrm{~nm}(\log \varepsilon 3.46$ and 3.71$)$, $\nu_{\text {max. }}$
$1700,1510,1260,1080$, and $780 \mathrm{~cm}^{-1} ; \delta 7.93(\mathrm{H}, \mathrm{e})$,
[8/001 Received, 3rd January, 1978]


[^0]:    ${ }^{6}$ D. Brewer and A. Taylor, Canad. J. Microbiol., 1967, 13, 1577.

    7 Y. Kishi, S. Nakatsuka, T. Fukuyama, and M. Havel, J. Amer. Chem. Soc., 1973, 95, 6493.
    ${ }^{8}$ W. D. Jamieson, R. Rahman, and A. Taylor, J. Chem. Soc. (C), 1969, 1564.
    ${ }_{9}$ R. Rahman, S. Safe, and A. Taylor, J. Chromatog., 1970, 53, 592.
    ${ }_{10}$ J. S. Shannon, Tetrahedron Letters, 1963, 801.
    11 J. W. Ronaldson, Austral. J. Chem., 1975, 28, 2043; 1976, 29, 2307.

[^1]:    12 P. G. Gassman and T. J. van Bergen, J. Amer. Chem. Soc., 1974, 96, 5512.
    ${ }^{13}$ D. R. Morris and L. P. Hager, J. Biol. Chem., 1966, 241, 1763.

[^2]:    14 R. Hodges and A. Taylor, J. Chem. Soc., 1964, 4310.

